Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(6): e0287754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37379318

RESUMO

Prediction of stock price has been a hot topic in artificial intelligence field. Computational intelligent methods such as machine learning or deep learning are explored in the prediction system in recent years. However, making accurate predictions of stock price direction is still a big challenge because stock prices are affected by nonlinear, nonstationary, and high dimensional features. In previous works, feature engineering was overlooked. How to select the optimal feature sets that affect stock price is a prominent solution. Hence, our motivation for this article is to propose an improved many-objective optimization algorithm integrating random forest (I-NSGA-II-RF) algorithm with a three-stage feature engineering process in order to decrease the computational complexity and improve the accuracy of prediction system. Maximizing accuracy and minimizing the optimal solution set are the optimization directions of the model in this study. The integrated information initialization population of two filtered feature selection methods is used to optimize the I-NSGA-II algorithm, using multiple chromosome hybrid coding to synchronously select features and optimize model parameters. Finally, the selected feature subset and parameters are input to the RF for training, prediction, and iterative optimization. Experimental results show that the I-NSGA-II-RF algorithm has the highest average accuracy, the smallest optimal solution set, and the shortest running time compared to the unmodified multi-objective feature selection algorithm and the single target feature selection algorithm. Compared to the deep learning model, this model has interpretability, higher accuracy, and less running time.


Assuntos
Algoritmos , Inteligência Artificial , Aprendizado de Máquina , Movimento , Algoritmo Florestas Aleatórias
2.
PLoS One ; 17(8): e0272637, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976906

RESUMO

Modeling and forecasting stock prices have been important financial research topics in academia. This study seeks to determine whether improvements can be achieved by forecasting a stock index using a hybrid model and incorporating financial variables. We extend the literature on stock market forecasting by applying a hybrid model that combines wavelet transform (WT), long short-term memory (LSTM), and an adaptive genetic algorithm (AGA) based on individual ranking to predict stock indices for the Dow Jones Industrial Average (DJIA) index of the New York Stock Exchange, Standard & Poor's 500 (S&P 500) index, Nikkei 225 index of Tokyo, Hang Seng Index of Hong Kong market, CSI300 index of Chinese mainland stock market, and NIFTY50 index of India. The results indicate an overall improvement in forecasting of the stock index using the AGA-LSTM model compared to the benchmark models. The evaluation indicators prove that this model has a higher prediction accuracy when forecasting six stock indices.


Assuntos
Memória de Curto Prazo , Redes Neurais de Computação , Previsões , Memória de Longo Prazo , Análise de Ondaletas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...